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Unidirectional SrO. A1203" 2SIO2 glass-ceramic matrix composites reinforced with

uncoated chemical vapor deposited (CVD) SiC (SCS-0) fibers have been fabricated

by hot-pressing under appropriate conditions using the glass-ceramic approach. Almost

fully dense composites having a fiber volume fraction of 0.24 have been obtained.

Monoclinic celsian, SrAIzSi208, was the only crystalline phase observed in the matrix by
x-ray diffraction. No chemical reaction was observed between the fiber and the matrix

after high temperature processing. In three-point flexure, the composite exhibited a first

matrix cracking stress of --231 _+ 20 MPa and an ultimate strength of 265 _+ 17 MPa.

Examination of fracture surfaces revealed limited short length fiber pull-out. From fiber

push-out, the fiber/matrix interfacial debonding and frictional strengths were evaluated

to be -17.5 _+ 2.7 MPa and 11.3 _+ 1.6 MPa, respectively. Some fibers were strongly

bonded to the matrix and could not be pushed out. The micromechanical models were

not useful in predicting values of the first matrix cracking stress as well as the ultimate
strength of the composites.

I. INTRODUCTION

Strong, tough, and environmentally stable fiber-
reinforced composites (FRC) are needed for various

high temperature structural applications in the aerospace
and other industries. BaO. A1203" 2SIO2 (BAS) and

SrO'A1203-2SIO2 (SAS) having monoclinic celsian
as the crystalline phase are refractory glass ceramics

and, therefore, are being used as matrix materials

for the fabrication of fiber-reinforced composites at

NASA Lewis Research Center. Properties of SiC

fiber-reinforced BAS matrix composites have been

described earlier, t-3 Results of a study on (SCS-0)/

SAS composites are being presented here. The SCS-0

fiber is an uncoated large diameter monofilament

produced by chemical vapor deposition. The primary
objective of the present study was to develop the

processing of SCS-0/SAS composites and characterize

their physical and mechanical behavior. Unidirec-

tional fiber-reinforced composites were fabricated by

hot-pressing in vacuum. Flexural strengths of the

resulting composites were measured in 3-point bending

mode, and the fiber/matrix interfacial shear strengths

were evaluated by a fiber push-out method. Another

objective was to test the applicability of various
micromechanical models in predicting the first matrix

cracking stress and ultimate strength of the SCS-0/SAS

composites.

II. MATERIALS AND EXPERIMENTAL METHODS

Strontium aluminosilicate glass of stoichiometric

celsian composition, SrO'AIzO3"2SiO2, was used

as precursor to the matrix. The glass was melted at
--2000°C in a continuous electric melter with Mo

electrodes using laboratory grade SrCO3, AI203, and

SiO2. Homogeneous and clear glass flakes were pro-
duced by quenching the melt between water-cooled

metallic rollers. Attrition milling of the glass frit using
aluminum or zirconia media resulted in glass powder

having an average particle size of <2.5 /zm. From wet

chemical analysis, the composition of the glass pow-

der was determined in weight percent to be 33.7 SrO,

31.5 A1203, 33.8 SiO2, 0.12 Na20, and 0.86 BaO. The

Mo was estimated at 0.01 MoO3 by a spectrographic

technique. The batch composition in weight percent
was 31.8 SrO, 31.3 A1203, and 36.9 SiO2, which cor-

responds to stoichiometric celsian.

Continuous CVD SiC (SCS-0) monofilaments from

Textron Specialty Materials having a diameter of

--140/zm with no surface coating were used as the

reinforcements. These fibers are produced by chemical

vapor deposition of SiC onto a pyrolytic graphite-coated

carbon core having diameter of -37 #m. The fiber is
made up of two distinct zones. The inner zone consists 4

of carbon-rich ,B-SiC columnar grains extending in
the radial direction with (11 l) preferred orientation and

lengths of a few micrometers. The outer zone consists of

nearly stoichiometric /3-SIC grains. The average grain

diameter changes from -50 nm in the inner zone to

100 nm in the outer zone. 4 At room temperature these

fibers typically have an elastic modulus of --391 GPa

and a tensile strength of --!.8 GPa. The average axial

thermal expansion coefficient of these fibers, from room
temperature to 1000 °C, is -4.4 X 10-6/°C.
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Unidirectional FRC panels (--11.25 cm X 5 cm X

0.125 cm) with five plies were fabricated using a glass-

ceramic approach to take advantage of the viscous flow

of the glass during hot pressing. Details of this method
are described elsewhere, t-3 An aqueous slurry of SAS

glass powder along with organic additives was cast

into tapes using a doctor blade and allowed to dry in

ambient atmosphere. The dry tape, --0.15 mm thick, was
cut to size. The fiber mats were prepared by winding

continuous SCS-0 fibers on a drum with a spacing

of 41 fibers per cm and cut to size. Adhesive tape
was used to hold the fibers in place. Matrix tapes and

fiber mats were alternately stacked up in the desired

orientation and warm pressed. The resulting "green"

composite was wrapped in Mo sheet and then in grafoil

sheet and hot-pressed under vacuum in a graphite die

under appropriate pressure and temperature. The fugitive

binder was burned out in situ in the hot press by holding

at a lower temperature. The resulting FRC panels were

surface polished and sliced into flexure test bars using a

high speed diamond blade saw.
Microstructures of the polished cross sections as

well as fracture surfaces were observed in an optical mi-

croscope as well as in a JEOL JSM-840A scanning elec-

tron microscope (SEM). X-ray dot mapping of various
elements in the fiber/matrix interface region was carried

out using a Kevex Delta class analyzer. The fiber volume

fraction in the composite, Vf, was determined from

Vf = NyTrD2/4wd, (1)

where N s is the number of fibers, D is the fiber diameter
assumed to be 140 p,m, and w and d are, respectively,

the width and thickness of the specimen. Densities were

measured by the Archimedes method as well as from

specimen dimensions and weight. The crystalline phases

formed in the matrix were identified from powder x-ray

diffraction (XRD) patterns recorded at room temperature

using a step scan procedure (0.03°/20 step, count time

0.5 s) on a Philips ADP-3600 automated powder diffrac-

tometer equipped with a crystal monochromator and

employing Cu K,_ radiation. Mechanical properties were
determined from stress-strain curves recorded in three-

point flexure using an Instron machine at a crosshead

speed of 0.127 cm/min (0.05 in./min). The span length

of the lower rollers was 3.75 cm (1.5 in.). A test span to

sample thickness ratio of >25 was used in strength meas-

urements. The first matrix cracking stress and the elastic

modulus of the composites were determined from strain

gauges glued to the tensile surface of the test bars. A
discontinuous jump in strain in the load versus strain

plot indicated matrix cracking. Matrix cracking was also
indicated by a kink in the load versus time output

of a chart recorder. Values of first matrix cracking

stress obtained from the two techniques were in good

agreement. Elastic modulus was determined from the

linear portion of the load versus strain curve up to the

first matrix cracking load.
Fiber/matrix interfaciai shear strength was deter-

mined from a fiber push-out test 5 using thin polished

sections of the composites cut normal to the fiber axis.
The indenter, a 100-/,m diameter, fiat-bottomed tungsten

carbide punch was aligned over a single fiber and was

driven at a constant speed of 50 /_m/min. The specimen

was supported so that the fiber being pushed out can
protrude out of the bottom of the sample without any

obstruction. A load cell in parallel with the punch

constantly monitors the load as the punch is pushed me-

chanically. Load data were collected at 50-ms intervals

by a computer. Conversion of time to actual crosshead

displacement allows a load versus displacement curve to

be generated as the output of the push-out test. At least

ten fibers were pushed out in different regions of the

FRC. The push-out apparatus had an upper load limit
of 40 N.

III. RESULTS AND DISCUSSION

A scanning electron micrograph of the polished

cross section of the SCS-0/SAS FRC is shown in

Fig. !. Uniform fiber distribution and good matrix flow

around the fibers during hot pressing is observed. In the

hot-pressed composites, the SAS matrix crystallized to

the desired thermodynamically stable monoclinic celsian

SrAlzSi208 phase, 6 as found from XRD analysis (Fig. 2).

Typical stress-displacement curve, measured in 3-point
flexure, for a unidirectional composite with fiber vol-

ume fraction of 0.24 is shown in Fig. 3. Also shown

is the stress versus displacement curve, measured in 4-

point bend, for a SAS monolith hot-pressed at 1200 °C
for 2 h under 24 MPa. The monolith shows a strength

FIG. 1. SEM micrograph of polished cross section of unidirec-
tional CVD SiC;(SCS-O)/SAS composite showing uniform fiber
distribution.
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FIG. 2. Powder x-ray diffraction pattern of SCS-0/SAS composite.

The peak at 20 = 35.6 is due to /3 SiC. The remaining peaks cor-

respond to monoclinic celsian.

of --130 MPa and fails in a brittle mode as expected.

For the composite, the stress-strain curve consists of

an initial linear elastic region followed by first matrix

cracking where the applied load reaches a critical value

required to propagate the first microcrack across the

specimen outer tensile surface layer. Beyond this the
load is transferred to the fibers showing some increase

in strength beyond the first matrix crack, followed by
a large and sudden drop in load. As discussed below,

the strength of the SCS-0 fibers degraded during high

temperature composite processing, thus limiting load-

carrying capacity beyond the first matrix cracking stress.

Room temperature physical and mechanical properties

of the composite are summarized in Table I. Average

values of first matrix cracking stress, o-_., and ultimate

strength, or,, (Table I) of the unidirectional composite for
five test bars were 231 _+ 20 MPa and 265 ___17 MPa,

respectively. In contrast, CVD SiCf(SCS-6)/SAS com-

posites show 7 graceful failure with o'_. of -289 MPa

400 --

300 --

200 --

100

Hot-pressed I

SAS monolithic
SCS-0/SAS composite

_¢r_ = 248 MPa
i

_, _u = 285 MPa

Displacement

FIG. 3. Stress-displacement curves for hot-pressed SAS monolithic

and unidirectional SCS-0/SAS composite (Vj = 0.24) measured in

four-point and three-point flexure, respectively.

TABLE I. Room temperature properties of unidirectionally reinforced

CVD SiCj (SCS-0)/SAS composites ISAS 6-9-931.

Property Value

Measured

Fiber volume fraction, V¢

Density, p, g/cm 3

Elastic modulus, h E, GPa

First matrix cracking stress, b o'_, MPa

First matrix cracking strain, b E,, %,

Ultimate strength, b o-,, MPa

Fiber/matrix debonding strength5 r,j, MPa

Sliding frictional stress, 7-I, MPa

Calculated

cry, MPa

Transition crack length, C,,,, #m

o',, MPa

0.24

2.99 a

102 +- 10

231 -+ 20

--0.22

265 +- 17

17.5 +_ 2.7

11.3 _+ 1.6

365

625

47O

_-98% of theoretical density.

"From three-point bend test.

"From fiber push-out test.

and o-, of _824 MPa. These results clearly demonstrate
that reinforcement of the SAS glass-ceramic with SCS-0

fibers results in toughening, but only a very limited

improvement in o-, beyond the first matrix crack.
To understand fracture mechanism in the compos-

ites, one can compare the experimental results with

the composite theories. For example, in unidirectional

fiber-reinforced composites, the ultimate composite

strength may be approximately calculated from the

rule-of-mixture equation

o',, = cr! Vt (2)

where the matrix is assumed to carry no load and o-t

is the average fiber strength (for 25 mm gauge length)

after high temperature composite processing. However,

average strength of the fibers in situ in the FRC following

hot pressing is unknown unless fibers can be extracted

from the composite without further damage to the fibers
and tensile tested. It is known that the interactions

occurring during the composite processing may reduce

the fiber strength. For example, strength of Nicalon

fibers is _3 GPa, but strength of the fibers extracted

from Nicalon/Pyrex composites following processing at

_950 °C is reduced by _50%." The degradation in the

fiber strength depends on the temperature and pressure

used during processing as well as on the reactivity
between the fiber and the matrix. The strength of SCS-0

fibers degrades 9 after exposure to temperatures beyond

1200°C in argon, due to recrystallization and grain

growth of the SiC grains in the outer zone of the
fibers. Strength degradation of the fibers increased with

temperature and time of exposure at temperatures above
1200 °C. For example, the room temperature strength of

SCS-0 fibers degraded from 3.2 GPa to 2.5 GPa and
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1.9 GPa after 1 h exposure in 0.1 MPa argon pressure

at 1400°C and 1600°C, respectively. 9 The exposure

temperature has greater influence on the fiber strength

degradation than time. This probably explains the low

ultimate strengths observed in the present study for the

composite hot-pressed at high temperature.

A typical SEM fracture surface micrograph, after the

3-point bend test, of FRC is shown in Fig. 4. Debonding
of the fibers from the matrix at the interface and matrix

crack deflection around the fibers are clearly observed.

However, only limited short length fibers pull-out is seen

in the composite which would result in only limited
toughening behavior. The surface of the pulled-out fibers
is clean and smooth. These results are consistent with the

stress-strain behavior observed for these FRC's. SEM

micrographs showing the fiber/matrix interface in FRC's

are shown in Fig. 5. The interface is clean and no gross
reaction is observed at the fiber/matrix interface.

To further analyze the interface behavior, typical

load versus crosshead displacement curves for push-out

of fibers from the composite are shown in Fig. 6. The

initial linear region corresponds to the elastic response of

the test apparatus. The peak load, Pdebond, corresponds to
the fiber/matrix interfacial shear strength, and the sudden

drop in load represents debonding of the fiber. Following

debonding, the slight increase in load corresponds to

additional debonding. At the maximum, the entire length

of the fiber is debonded and the fiber begins to exit from

the opposite face of the composite. The slow decrease

in load is due to the decrease in embedded length of

the fiber. The steady state load represents the sliding

friction at the interface. Assuming a uniform interfacial

shear stress along the length of the fiber/matrix interface,
values of the interfacial shear strength for debond (_'d)

Matrix

FIG. 5. (a, b) SEM micrographs of the polished cross section of a uni-
directional SCS-O/SAS composite showing the absence of chemical
reaction at the fiber-matrix interface.

FIG. 4. SEM micrograph of the fracture surface of a unidirectional
SCS-0/SAS composite showing limited fiber pull-out.

and frictional resistance (Tf) were evaluated from

_" = P/(2¢rrLf) (3)

where P is the debonding or frictional load, r is the

fiber radius, and Lf is the embedded fiber length. The
mean values of Td and _r (Table II) were determined

to be 17.5 _+ 2.7 MPa and 11.3 _+ 1.6 MPa, respec-

tively. One fiber even gave a value of 56 MPa for
_'d. Some fibers did not debond even at a load of

40 N, the upper limit of the test apparatus, resulting

in _'d > 62 MPa. Values of T<+and rj,- are seen to be

much higher for the SCS-0/SAS composite than 6.6 _+
0.7 MPa and 4.2 _+ 0.6 MPa observed for the SCS-6/

SAS system, j° From fiber push-out and pull-out tests,

the fiber/matrix interfacial shear strengths have been
evaluated to be 15.6 _+ 8.3 for the SCS-0 fiber and 3.9 _+

1.4 for the SCS-6 fiber in a borosilicate (CGW #7761)

glass matrix. II Signs of chemical reaction between the
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FIG. 6. Typical load versus crosshead displacement curves recorded during fiber push-outs in CVD SiC/(SCS-0)SAS composites: sample
thickness 1.44 ram.

uncoated SCS-0 fiber and the glass were observed after

composite processing, whereas no reaction was observed

between the glass and the SCS-6 fiber having carbon-

rich surface coatings. Goettler and Faber t2 measured

the fiber/matrix interfacial shear properties of SiC fibers

in sodium borosilicate glass matrix system using single

fiber pull-out tests. A carbon coating on the SiC fiber

surface was an effective reaction barrier in preventing the

fiber/matrix bonding and oxidation of the fibers by the

glass matrix. However, coatings having higher carbon

content resulted in stronger bonding at the interface.

SEM micrographs showing the in-plane and pushed-

out fibers in the composite are shown in Fig. 7. The

TABLE !1. Fiber push-out data for CVD SIC/- (SCS-O)/SAS compos-

ite ISAS 6-9-93; Vj, = 0.24: sample thickness = 1.44 mml.

Fiber Debond Sliding

No. load, N zj, MPa load, N 7I, MPa

l _ 36.03 h 56. Ih I0.0 15.6

2 11.55 I8.0 7.07 11.0

3 9.05 14. I 6.75 10.5

4 13.14 20.4 6.84 10.6

5 12.17 18.9 7.13 l 1.1

6 13.98 2 1.8 7.60 11.8
7_' >40 b >62 h

8 10.09 15.7 6.81 10.6

9 9.89 15.4 6.54 10.2

I(1 10.28 16.0 6.85 10.7

IP >40 h >62 b

Mean: 11.27 17.5 7.29 11.3

Std. Dev.: 1.73 2.7 1.06 1.6

aThis fiber showed atypical behavior: however, the data are real
and the fiber did debond.

bNot included in taking the mean.

CFiber did not debond up tt) a load of 4(1 N, the upper limit nf the

apparatus.

(a)

(b) .

FIG. 7. (a,b) SEM micrographs showing in-place and pushed-out

fibers in CVD siC/(SCS-0)/SAS composite.
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surfaces of the pushed-out fibers appear to be smooth.

There appears to be clean debonding between the fibers
and the matrix. Also, no chemical interaction is observed

at the fiber/matrix interface after the high temperature

composite processing. An SEM micrograph and the

x-ray dot maps of various constituent elements taken on

the polished surface of the sample in the fiber/matrix
region are presented in Fig. 8. On this scale, there

appears to be no interdiffusion of the elements between

the fiber and the matrix after high temperature com-

posite processing. In an earlier study by the present
author, L_ no chemical reaction was observed between

the SCS-0 fiber and BAS matrix in hot-pressed com-

posite. Examination of the fracture surface revealed

fiber/matrix debonding at the interface, fiber pull-out,

and crack deflection around the fibers, indicating a weak

fiber/matrix interface and a tough composite. Murthy and
Lewis 14 reported the formation of a carbon-rich layer at

the fiber/matrix interface in SiC (Nicalon or Tyranno)

fiber-reinforced nonstoichiometric BAS composite hot-

pressed at 1350 °C. The reaction layer was an admixture

of microcrystailine graphite, silica, and baria. Extensive
diffusion of barium well into the fiber was also observed.

In contrast, the SiC whisker/BAS glass interface was
found to be nonreactive.

It is also interesting to compare the measured value

of first matrix cracking stress with those predicted

from the steady-state micromechanical models which

have been recently developed. Using fracture mechanics
analysis, Marshall, Cox, and Evans 15 have modeled ma-

trix cracking in brittle matrix fiber-reinforced composites

by taking into account the crack closure effects of the
frictionally bonded bridging fibers. For large cracks, the

matrix cracking stress is independent of the crack size,

and a steady state matrix cracking stress is given bylS:

o',, = i.817[(1 - v2)K_c_'uE/V_V,,,

X (1 + EfVf/E,,,Vm)2/(E,,,r)] j/3 (4)

where v is the composite Poisson's ratio, Ktc the matrix

fracture toughness, V,,, the matrix volume fraction, r the

fiber radius, E I the fiber elastic modulus, E,,, the matrix
elastic modulus, and the other terms have been defined

earlier. Using v = 0.2, Kic = 1 MPa.m 1/2, EI =

390 GPa, Vf = 0.24, Em = 69 GPa, V,,, = 0.76, and

r = 71 #m, Eq. (4)may be written as or,. = 53.8(Ty) I/3.

Using _-f = 11.3 _+ 1.6 MPa for the composite in the

present study, a value of 121 MPa is predicted for o-y
from Eq. (4) without making any corrections for the

expected residual stresses in the matrix arising from

FIG. 8. SEM micrograph and x-ray dot maps of various elements at the fiber-matrix interface of the polished cross section of a unidirectional
CVD SiCj(SCS-0)/SAS composite.
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the thermal expansion mismatch between the fiber and

the matrix. This calculated o-,. is significantly lower

than the measured 3-point bend strength of 231 _+

20 MPa. However, it may be pointed out that generally

the tensile strengths are lower than those measured

in bending and the tensile test results, rather than the

flexural data, are more meaningful for comparison with
the predictions of the micromechanical models. Also,

Eq. (4) estimates the lower bound or,, at large crack
lengths above the transition crack length, C .... which is

given by the following equation:

Cm = (7r/414/3) {(KzcrE,,, V,,,)/[7/ V_ Et( I - v2)]} 2/_,
(5)

where / is a crack geometry constant with a value of

1.2 for straight cracks and 2/3 for penny cracks. The

expression for Cm given in the original work of Marshall
et al. l_ appears to be in error. Using Eqs. (23a) and

(17b) from Ref. 15, the above Eq. (5), rather than that
reported in the paper by Marshall et al., 1_ is obtained for

Cm. The matrix cracking stress approaches the steady
state value for cracks of lengths _C,,/3. In contrast,

for cracks shorter than Cm, o-,. should show a marked
dependence on crack size and significant departure from

the steady-state o-,.. Using the above values for various

parameters, the value of Cm calculated for the SCS-0/

SAS composite from Eq. (5) was 379 #m. Since the

Cm/3 value for this composite is near the SCS-0 filament

diameter, this would indicate significant departure from

the steady-state matrix cracking stress and a marked

dependence on the crack size. Cm values of 313 #m,

68 #m, 660 _m, and 3500 #m have been reported

for the Nicalon/lithium aluminosilicate glass-ceramic, _5

carbon/glass, l-s SiC(SCS-6)/zircon, 16 and SiC(SCS-6)/
sodium-zirconium phosphate (NZP) 17 composites, re-

spectively. This implies that C,,/3 is several fiber spac-

ing for all these composites, indicating the existence

of a steady-state condition. Since the inherent flaws in

ceramic materials are usually of microstructural dimen-
sions, these results indicate _5 that the matrix cracking

stress for these composites is not considerably reduced

by further introduction of larger flaws during composite

fabrication or service or by the extension of pre-existing
flaws in thermal shock or environmentally assisted slow

crack growth.

The above analysis suggests that the first matrix

cracking stress measured in the present study is not con-

trolled by a crack-bridging mechanism, but by Griffith

fracture of as-produced flaws under the combination of

applied and residual stresses. However, it may be pointed
out that the effects of residual thermal stresses arising

from the thermal expansion mismatch between the fiber
and the matrix have not been taken into account in the

calculations of the model. The axial residual stress in

the matrix, cr.... present in the composite as a result of

cooling from the hot pressing temperature is given by 19

_o-,,, = [Ei Vf(ce,,, - cef)AT]/[1 + Vf(Ef/E,,, - I)]

= [E_V_(,_,. - ,_s)AT] •[E,,,/E,] (6)

where oe,,, and oef are the thermal expansion coeffi-

cients of the matrix and the fibers, respectively, ,5,T

is the temperature range over which the composite

has cooled after hot-pressing, and the other terms are

the same as described above. For the composite of

this study, with VI = 0.24, oef = 4.4 x 10 6/°C, ex,,, =

2.5 x 10-6/°c, Ef = 390 GPa, and E,, = 69 GPa, the
axial residual stress, Ao-,,,, in the matrix at room tem-

perature is calculated from Eq. (6) to be - 115 MPa. The

negative _cr,,, implies that the SAS glass-ceramic matrix
will be in compression as fibers try to shrink more than
the matrix and the residual stresses will be beneficial,

tending to close the incipient matrix cracks. The residual

stress in the composite, _io-,, due to thermal expansion

mismatch between the fiber and the matrix is given by:

_icr,. = Ao-m(E,./E,,,) = [EfVf(ce,,, - oet)_T ] (7)

For the SCS-0/SAS composite, value of _cr, is calcu-

lated to be -244 MPa from Eq. (7). To account for the
residual stress effects due to fiber-matrix thermal ex-

pansion mismatch, '3,o-, calculated from Eq. (7) should

be added to that determined from Eq. (4) resulting

in or, of 365 MPa, which is much higher than the

231 _+ 20 MPa measured in 3-point bend. Also, the
tensile test results, rather than the flexura] data, are

more meaningful for comparison with the predictions of

the micromechanical models and generally the tensile

strengths are lower than those measured in bending.

This would result in greater discrepancy between the

predicted and the measured tensile strength data. Hence,
the micromechanical models do not appear to be useful

in predicting the first matrix cracking stress for the

SCS-0/SAS composite.

The ultimate tensile strength of a fiber-reinforced

composite is given by the equation2C_':_:

o-,, = Vto'r[{I/(m + 2)}1/'"'+'_{(m + I)/(m + 2)}]

X [2"rfL_/(ln 2)o-t.r] I/''+t, (8)

where V t is the volume fraction of fibers in the loading

direction, o-i is the mean fiber tensile strength at a

gauge length of L,,, m is the Weibull modulus, and
other terms have been described earlier. Equation (8)

takes into account the proper gauge length of fibers

relevant to composite tensile failure as well as the fiber

bundle failure in brittle matrix composites. In Eq. (8), the

first two terms, Vto-f, give the rule-of-mixtures strength
of the composite using the mean fiber strength at the

test gauge length L_. The third term within brackets is

the statistical bundle-like factor depending only on m.
This factor describes the tendency of the statistically
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weaker fibers to control the composite failure and the
counteracting fact that broken fibers still have substantial

load-carrying capability due to the sliding resistance "rf.
Thus, the first three terms together essentially give the

bundle rule-of-mixtures strength of the FRC. The last

term, called the composite factor, in Eq. (8) accounts

for the change in fiber strength from gauge length L0

to the characteristic gauge length relevant to composite

tensile failure and for the load carried by the broken

fibers in brittle matrix composites. The composite factor

is critical for predicting an accurate value of o-, for

the composite. Tensile strengths of SCS-0 fibers have
been recently measured by the present author. 22 Taking

o-f = 2686 MPa, m = 6.2, L0 = 1.25 cm, r = 70/zm,

and Tf = 11.3 MPa, Vf = 0.24 for the SCS-0/SAS
composite, a value of o-, = 470 MPa was calculated

from Eq. (8). The calculated value of o-,, is much higher

than the measured 3-point flexure strength of 265 +

17 MPa. This is particularly true considering that the

ultimate strengths of composites measured in flexure are
reported 23'24 to be always higher than those measured in

tension, by a factor of between 1.5 and 2.5, depending

on lay-up. This is generally ascribed to the differences in

stress distributions in the test specimens during flexure
and tensile tests. During tensile testing, the entire gauge

section is under tensile loading, but only a part of the

sample is under tension during flexure test. Thus, the

flexure strength data are not very useful for comparison

with the predictions of the micromechanical models

which are based on the assumptions of uniaxial tensile

loading. Another reason for the discrepancy between the

measured and predicted values of o-, could be the fiber

strength degradation occurring during composite fabri-

cation due to high temperature exposure and abrasion
damage, as discussed above.

IV. SUMMARY OF RESULTS

Unidirectional CVD SiC (SCS-0) fiber-reinforced

SAS glass-ceramic matrix composites have been fabri-

cated by hot-pressing. An almost fully dense composite

with fiber volume of 24% showed a first matrix cracking

stress of 231 _+ 21 MPa and an ultimate bend strength

of 265 _+ 17 MPa. The fracture surface showed only
limited and short length fibers pull-out. No chemical
reaction between the fibers and the SAS matrix was
observed from microstructurai observations and EDAX

analysis after high temperature processing. From fiber

push-out tests, the fiber/matrix debonding stress was

found to be 17.5 + 2.3 MPa, indicating a weak inter-

face. Some of the fibers were strongly bonded and could

not be pushed out. It is not clear why some fibers

are weakly bonded and the others are strongly bonded

with the matrix in the composite. The micromechanical

models do not appear to be useful in predicting the first

matrix cracking stress and the ultimate strength for the
large diameter CVD SiC (SCS-0) fiber-reinforced SAS

glass-ceramic matrix composite.

V. CONCLUSION

It may be concluded that reinforcement of SAS

glass-ceramic with uncoated CVD SiC (SCS-0) fibers

results in only limited improvement in load-carrying

capacity beyond the first matrix cracking stress. Thus,

the SCS-0 fiber is not very useful as a reinforcement for

SAS glass-ceramic matrix.
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